(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0) → t
g(s(x), s(y)) → g(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(s(x), s(y)) →+ g(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0') → t
g(s(x), s(y)) → g(x, y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(t, x, y) → f(g(x, y), x, s(y))
g(s(x), 0') → t
g(s(x), s(y)) → g(x, y)
Types:
f :: t → s:0' → s:0' → f
t :: t
g :: s:0' → s:0' → t
s :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_t2_0 :: t
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
g < f
(8) Obligation:
TRS:
Rules:
f(
t,
x,
y) →
f(
g(
x,
y),
x,
s(
y))
g(
s(
x),
0') →
tg(
s(
x),
s(
y)) →
g(
x,
y)
Types:
f :: t → s:0' → s:0' → f
t :: t
g :: s:0' → s:0' → t
s :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_t2_0 :: t
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
g < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_s:0'4_0(
+(
1,
n6_0)),
gen_s:0'4_0(
n6_0)) →
t, rt ∈ Ω(1 + n6
0)
Induction Base:
g(gen_s:0'4_0(+(1, 0)), gen_s:0'4_0(0)) →RΩ(1)
t
Induction Step:
g(gen_s:0'4_0(+(1, +(n6_0, 1))), gen_s:0'4_0(+(n6_0, 1))) →RΩ(1)
g(gen_s:0'4_0(+(1, n6_0)), gen_s:0'4_0(n6_0)) →IH
t
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
t,
x,
y) →
f(
g(
x,
y),
x,
s(
y))
g(
s(
x),
0') →
tg(
s(
x),
s(
y)) →
g(
x,
y)
Types:
f :: t → s:0' → s:0' → f
t :: t
g :: s:0' → s:0' → t
s :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_t2_0 :: t
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
g(gen_s:0'4_0(+(1, n6_0)), gen_s:0'4_0(n6_0)) → t, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
f(
t,
x,
y) →
f(
g(
x,
y),
x,
s(
y))
g(
s(
x),
0') →
tg(
s(
x),
s(
y)) →
g(
x,
y)
Types:
f :: t → s:0' → s:0' → f
t :: t
g :: s:0' → s:0' → t
s :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_t2_0 :: t
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
g(gen_s:0'4_0(+(1, n6_0)), gen_s:0'4_0(n6_0)) → t, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_s:0'4_0(+(1, n6_0)), gen_s:0'4_0(n6_0)) → t, rt ∈ Ω(1 + n60)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
t,
x,
y) →
f(
g(
x,
y),
x,
s(
y))
g(
s(
x),
0') →
tg(
s(
x),
s(
y)) →
g(
x,
y)
Types:
f :: t → s:0' → s:0' → f
t :: t
g :: s:0' → s:0' → t
s :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_t2_0 :: t
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
g(gen_s:0'4_0(+(1, n6_0)), gen_s:0'4_0(n6_0)) → t, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_s:0'4_0(+(1, n6_0)), gen_s:0'4_0(n6_0)) → t, rt ∈ Ω(1 + n60)
(18) BOUNDS(n^1, INF)